Goto

Collaborating Authors

 Real Time Systems


NewTerm: Benchmarking Real-Time New Terms for Large Language Models with Annual Updates Hexuan Deng 1 Min Zhang

Neural Information Processing Systems

However, existing benchmarks focus on outdated content and limited fields, facing difficulties in real-time updating and leaving new terms unexplored. To address this problem, we propose an adaptive benchmark, NewTerm, for real-time evaluation of new terms. We design a highly automated construction method to ensure high-quality benchmark construction with minimal human effort, allowing flexible updates for real-time information. Empirical results on various LLMs demonstrate over 20% performance reduction caused by new terms. Additionally, while updates to the knowledge cutoff of LLMs can cover some of the new terms, they are unable to generalize to more distant new terms. We also analyze which types of terms are more challenging and why LLMs struggle with new terms, paving the way for future research. Finally, we construct NewTerm 2022 and 2023 to evaluate the new terms updated each year and will continue updating annually.


RTFormer: Efficient Design for Real-Time Semantic Segmentation with Transformer Jian Wang 1 Qiman Wu1

Neural Information Processing Systems

Recently, transformer-based networks have shown impressive results in semantic segmentation. Yet for real-time semantic segmentation, pure CNN-based approaches still dominate in this field, due to the time-consuming computation mechanism of transformer. We propose RTFormer, an efficient dual-resolution transformer for real-time semantic segmenation, which achieves better trade-off between performance and efficiency than CNN-based models. To achieve high inference efficiency on GPU-like devices, our RTFormer leverages GPU-Friendly Attention with linear complexity and discards the multi-head mechanism. Besides, we find that cross-resolution attention is more efficient to gather global context information for high-resolution branch by spreading the high level knowledge learned from low-resolution branch. Extensive experiments on mainstream benchmarks demonstrate the effectiveness of our proposed RTFormer, it achieves state-of-the-art on Cityscapes, CamVid and COCOStuff, and shows promising results on ADE20K.


FOF: Learning Fourier Occupancy Field for Monocular Real-time Human Reconstruction

Neural Information Processing Systems

The advent of deep learning has led to significant progress in monocular human reconstruction. However, existing representations, such as parametric models, voxel grids, meshes and implicit neural representations, have difficulties achieving high-quality results and real-time speed at the same time. In this paper, we propose Fourier Occupancy Field (FOF), a novel, powerful, efficient and flexible 3D geometry representation, for monocular real-time and accurate human reconstruction. A FOF represents a 3D object with a 2D field orthogonal to the view direction where at each 2D position the occupancy field of the object along the view direction is compactly represented with the first few terms of Fourier series, which retains the topology and neighborhood relation in the 2D domain. A FOF can be stored as a multi-channel image, which is compatible with 2D convolutional neural networks and can bridge the gap between 3D geometries and 2D images. A FOF is very flexible and extensible, e.g., parametric models can be easily integrated into a FOF as a prior to generate more robust results. Meshes and our FOF can be easily inter-converted. Based on FOF, we design the first 30+FPS high-fidelity real-time monocular human reconstruction framework. We demonstrate the potential of FOF on both public datasets and real captured data.


Japan backs AI chip startup EdgeCortix in boost to defense tech

The Japan Times

EdgeCortix, a Tokyo-based artificial intelligence (AI) chip startup, is riding a wave of interest to foster Japanese semiconductors with defense applications. EdgeCortix, which has won a contract tied to the U.S. Department of Defense, on Wednesday secured government subsidies of 3 billion ( 21 million) to develop energy-efficient AI chiplets for commercialization in 2027. The contract may help revenue more than double this year, founder Sakyasingha Dasgupta said. The products, designed to help robots make real-time decisions and fill the country's labor shortages, target mass production at Taiwan Semiconductor Manufacturing Co.'s plant in Japan. The subsidies are on top of 4 billion in support the semiconductor designer won in November to make chips for next-generation communication systems.


OnACID: Online Analysis of Calcium Imaging Data in Real Time Andrea Giovannucci Matthew Kaufman Anne K. Churchland Dmitri Chklovskii Liam Paninski

Neural Information Processing Systems

Optical imaging methods using calcium indicators are critical for monitoring the activity of large neuronal populations in vivo. Imaging experiments typically generate a large amount of data that needs to be processed to extract the activity of the imaged neuronal sources. While deriving such processing algorithms is an active area of research, most existing methods require the processing of large amounts of data at a time, rendering them vulnerable to the volume of the recorded data, and preventing real-time experimental interrogation. Here we introduce OnACID, an Online framework for the Analysis of streaming Calcium Imaging Data, including i) motion artifact correction, ii) neuronal source extraction, and iii) activity denoising and deconvolution. Our approach combines and extends previous work on online dictionary learning and calcium imaging data analysis, to deliver an automated pipeline that can discover and track the activity of hundreds of cells in real time, thereby enabling new types of closed-loop experiments. We apply our algorithm on two large scale experimental datasets, benchmark its performance on manually annotated data, and show that it outperforms a popular offline approach.


Real Time Image Saliency for Black Box Classifiers

Neural Information Processing Systems

In this work we develop a fast saliency detection method that can be applied to any differentiable image classifier. We train a masking model to manipulate the scores of the classifier by masking salient parts of the input image. Our model generalises well to unseen images and requires a single forward pass to perform saliency detection, therefore suitable for use in real-time systems. We test our approach on CIFAR-10 and ImageNet datasets and show that the produced saliency maps are easily interpretable, sharp, and free of artifacts. We suggest a new metric for saliency and test our method on the ImageNet object localisation task. We achieve results outperforming other weakly supervised methods.